

Magnetospheric Constellation Mission

Thomas E. Moore NASA Study Scientist, NASA/GSFC

Harlan E. Spence

Chair, Magnetospheric Constellation Science and Technology Definition Team (MCSTDT), Boston University Center for Space Physics

On Behalf of the Entire MCSTDT(*)

(Visit our website at http://sec.gsfc.nasa.gov/magcon.htm)

(*) Definition Team

Harlan Spence*	Boston University	spence@bu.edu	617-353-7412
Brian Anderson	APL	brian.anderson@jhuapl.edu	240-228-6347
Vassilis Angelopoulos	U of Cal, Berkeley	vassilis@ssl.berkeley.edu	510-643-1871
Wolfgang Baumjohann	Max Planck, Garching	<u>bj@mpe.mpg.de</u>	49-89-32993539
Joseph Borovsky	LANL	jborovsky@lanl.gov	505-667-8368
Robert Carovillano	Boston College	bob.carovillano@bc.edu	617-552-3587
Paul Craven	MSFC	paul.craven@msfc.nasa.gov	256-544-7639
Joseph Fennell	Aerospace	Joseph.F.Fennell@aero.org	310-336-7075
Charles Goodrich	U Maryland CP	ccg@avl.umd.edu	301-405-1516
Michael Hesse	GSFC	michael.hesse@gsfc.nasa.gov	301-286-8224
Xinlin Li	U of Colorado	lix@kitron.colorado.edu	303-492-3514
Kristina Lynch	U New Hampshire	kristina.lynch@unh.edu	603-862-3871
Joachim Raeder	UCLA	<u>jreader@igpp.ucla.edu</u>	310-267-2338
Geoffry Reeves	LANL	reeves@lanl.gov	505-665-3877
David Sibeck	APL	david.sibeck@jhuapl.edu	240-228-8545
George Siscoe	Boston U	siscoe@bu.edu	978-443-8559
Nikolai Tsyganenko	GSFC	kolya@nssdca.gsfc.nasa.gov	301-286-7925
Mary Mellott	HQ Program Scientist	mary.mellott@hq.nasa.gov	202-358-0893
Dana Brewer	HQ Technology	dbrewer@hq.nasa.gov	202-358-1678
Mary DiJoseph	GSFC Formulation	mary.dijoseph@gsfc.nasa.gov	301-286-1495
Thomas E Moore	GSFC Study Scientist	thomas.e.moore@gsfc.nasa.gov	301-286-5236
Federico Herrero	GSFC Technology	fred.herrero@gsfc.nasa.gov	301-286-9118

^{*} Chair

What is the

Magnetospheric Constellation Mission?

The Solar Terrestrial Probe for

Understanding Global Dynamics of the Structured Magnetotail

Dynamics,

Responses,

And

Coupling, from an

Observatory of

50-100 spacecraft

...the region controlling complex energy flows in the magnetosphere.

Why a Constellation Mission?

Observations and simulations show that the magnetotail is highly structured in space and time ($L > \sim 1$ Re; $t > \sim 10$ sec)

Constellation DRACO will resolve space/time ambiguities which conceal the governing physical processes.

Regional flow bursts in the dynamic plasma sheet (C.Goodrich/J.Lyon)

Physics Foundations

How does the magnetotail control energy flow?

- What processes control magnetotail structure and dynamics?
- How do the physical processes and regions couple over the hierarchy of scales?

Coupled magnetotail structures through which energy flows dynamically (J. Raeder/UCLA).

Physics Cornerstone #1: Dynamics

- What is the nature of global magnetotail reconfigurations?
- Is the magnetotail dynamic for steady boundary conditions?
- How does the magnetotail accelerate and transport particles?

DRACO will for the first time reveal the instantaneous configuration of the <u>dynamic</u> magnetotail.

Physics Cornerstone #2: Responses

- Are flow vortices and configuration changes generated spontaneously or driven externally?
- Are small-scale flow bursts related to large-scale plasmoids and dipolarizations?

DRACO will determine and characterize the magnetotail's *responses* to external and internal drivers.

Physics Cornerstone #3: Coupling

4 substorm current wedge

- Does the magnetotail reconfigure from the inside out (rarefactively) or from the outside in (compressively)?
- How does the magnetotail couple to the inner magnetosphere, ionosphere, and thermosphere?

DRACO's measurement network will reveal the *coupling* between magnetotail

their cause-andeffect relationships.

③ rarefaction wave

3 braking & dawnward current

4 NENL

Complementarity with MMS

Scale

Single spacecraft have only glimpsed microand macro-physical processes.

The next logical step is to deploy spacecraft "networks" and requires both:

- MMS to resolve smaller size and shorter time scales; and,
- DRACO to resolve larger size and longer time scales.

Systematic Space/Time Coverage Hours >10 sec

Increasing Time Scale

Mission Concept

Spacecraft deployed with optimal spatial distribution.

Prime mission conducted while in magnetotail; secondary science on flanks and dayside.

Excellent constellation coverage and evolution over two-year mission.

First-year tail pass Second-year tail pass

Spacecraft distributed in 3x7 Re to 3x40 Re low inclination, nested orbits.

DRACO "nearest neighbor" spacing peaks at 2.0 - 1.0 R_E for ~ 50 - 100 spacecraft.

Percent total time vs. nearest neighbor distance

Measurement Requirements

Ma	qne	etic	Fi	el	d:
1					

Dynamics Responses

Connections

Bulk Plasma:

Dynamics Responses Connections

Measurement	Range	Resolution	Time Resolution	Comments
3-Axis Magnetic Field	+/- 300 nT	0.1 nT	1 sec	Fluxgate technology exists
Plasma 2-D Temperature	10 - 20000 eV	20%	10 sec	Requires 180° field-of- view
Plasma Flux	10 ² - 10 ⁸ cm ⁻² s ⁻¹ sr ⁻¹ eV/eV	20%	10 sec	Electrostatic analyzer technology exists
Plasma 3-D Velocity Electron PAD	1 - 1000 km/s	20% 20°	10 sec	Mass analysis significant but not absolutely required.
Particle Energy	20 - 500 keV	20%	10 sec	Mass analysis significant but not absolutely required.
Particle Flux	1E0 - 1E6	20%	10 sec	Solid state telescope

Suprathermal Particles:

Dynamics Responses Connections

	Tartiere Ellergy	20 300 RC V	2070	To see	but not absolutely required.
s s s	Particle Flux	1E0 - 1E6 cm-2 s-1 sr-1	20%	10 sec	Solid state telescope technology
13	Particle Pitch Angle	180°	20°	10 sec	

Spacecraft

Mass: 10 kg

Payload: 2.5 kg

Power: 10 W

Size: 40 x 10 cm

Evolutionary design based on ST-5 nanosatellite (20kg, 20W)

Dispenser Ship

Sized for Delta II Fairing Capacity ~ 100 nanosats

Preliminary study uses only one launcher to deploy the constellation

June 2000 Status

FY99-00 Accomplishments:

- MC-STDT formed Feb. 99
 - Meetings 1 March, 1-2 April, 17-18 May, 12-13 July, 8-9 Sept. 1999, 8-9 May 2000.
- Magnetospheric Constellation DRACO defined
- Mission feasibility/requirements studies:
 - > Science instrumentation (ATD required for "sciencecraft" miniaturization, manufacturability)
 - > Nanospacecraft
 - > Deployer ship and Orbital deployment
- MC-STDT Report in draft form for community and SECAS input.

Preliminary Schedule (no assumed LWS acceleration)

